Dr. G. Groh
Sommersemester 2025

Übungen zur Wirtschaftspolitik

Übungsblatt 7

1. In einer Volkswirtschaft mit insgesamt N=1000 Personen gebe es 4 gleich große Einkommensklassen, die in aufsteigender Reihenfolge angeordnet seien:

	Klasse 1 (25%)	Klasse 2 (25%)	Klasse 3 (25%)	Klasse 4 (25%)
Einkommen	1000,-	2000,-	3000,-	4000,-

Zeichnen Sie auf dieser Basis die Lorenzkurve und berechnen Sie den Gini-Koeffizienten.

2. Ein Staat bestehe zu $N_A = 40$ Personen aus "armen" und zu $N_B = 60$ Personen aus "reichen" Einwohnern. Das <u>Bruttoeinkommen eines beliebigen Mitglieds der Gruppe A</u> betrage $\tilde{y}_A = 3000$ und das eines beliebigen Mitglieds der Gruppe B $\tilde{y}_B = 5000$. Alle Einwohner haben jedoch die gleiche Nutzenfunktion:

$$U = \ln(y_i)$$
 mit y_i als individuellem Nettoeinkommen.

Um die Verteilung etwas ausgeglichener zu gestalten, führt der Staat nun ein Steuersystem ein, welches sich aus einer (einkommensunabhängigen) Transferzahlung t_0 und einem konstanten Einkommensteuersatz t_1 zusammensetzt. Somit hat eine Person i eine Gesamtsteuer von $t_1\tilde{y}_i - t_0$ zu entrichten.

- (a) Stellen Sie die Finanzierungsbedingung des Staates auf.
- (b) Ermitteln Sie die optimalen Werte für t_0 und t_1 , und zwar
 - zunächst für eine utilitaristische soziale Wohlfahrtsfunktion und
 - anschließend für eine Rawls'sche soziale Wohlfahrtsfunktion.

<u>Hinweis</u>: Anstatt zu rechnen, können Sie diese beiden Aufgaben auch durch intensives Nachdenken lösen.

3. Gehen Sie jetzt davon aus, daß nicht nur das <u>Netto</u>einkommen (y_i) , sondern auch das <u>Brutto</u>einkommen (\tilde{y}_i) von t_0 und t_1 abhängt, und zwar aufgrund von Anreizeffekten (die sich z.B. ergeben, wenn obige Nutzenfunktion um das Gut "Freizeit" ergänzt wird). Dabei gelte nun:

$$\tilde{y}_A = \tilde{y}_A(t_0, t_1) = 3000 - \frac{1}{9} \cdot \frac{t_0}{1 - t_1}$$
 und
 $\tilde{y}_B = \tilde{y}_B(t_0, t_1) = 5000 - \frac{1}{9} \cdot \frac{t_0}{1 - t_1}$

Die Gruppenstärken seien weiterhin mit $N_A = 40$ und $N_B = 60$ gegeben.

- (a) Wie hoch kann unter diesen Bedingungen die Transferzahlung t_0 maximal ausfallen?
- (b) Wie hoch wäre das Nettoeinkommen einer Person aus Gruppe A in diesem Fall?
- (c) Vergleichen Sie dieses mit demjenigen Einkommen, welches sich ohne staatliche Intervention (also bei t₀ = t₁ = 0) ergäbe. Wie ist das Resultat zu erklären? Gehen Sie bei der Beantwortung davon aus, daß Arbeit (neben der Subvention t₀) die einzige Einkommensquelle ist und der Nutzen einer Person neben dem Konsum auch von deren Freizeit abhängt. Gehen Sie bei der Beantwortung der Frage auch jeweils gesondert auf die Rolle von t₀ und t₁ ein. Welcher Spezialfall (bezüglich der Wirkung von t₁ ↑↓) liegt hier vor?
- (d) Wie hoch wäre das Nettoeinkommen einer Person aus Gruppe A bei einem Steuersatz von $t_1 = 0.4$ (und einem sich daraus ergebenden Transferbetrag t_0)?
- (e) Offenbar hat die staatliche Umverteilung hier einen kontraktiven Effekt auf das gesamtwirtschaftliche Einkommen. Können Sie sich Fälle vorstellen, in denen Umverteilung diesbezüglich auch expansiv wirken kann?