WIRTSCHAFTSPOLITIK

02 - ALLOKATIONSTHEORIE 1

Julian Hinz

Bielefeld, 16. April 2025

ORGANISATORISCHES

- Übungen beginnen in der kommenden Woche
- Räume teilweise geändert: ekvv checken

INHALT DER VORLESUNG

- Ziele staatlicher Wirtschaftspolitik
- Effizienz und Gerechtigkeit
- Wer legt die Ziele fest? Modelle nach Habermas
- Marktversagen und Korrekturmöglichkeiten

ZIELE STAATLICHER WIRTSCHAFTSPOLITIK

ETHISCHER INDIVIDUALISMUS

- Wert eines sozialen Zustands anhand individueller Bewertungen
- Herausforderung: Individuen handeln nicht immer rational
 - → selbst "universell gültige" Werte können zur Debatte stehen
 - $\rightarrow\,$ Unterschiedliche Gewichtungen universaler Werte wie Freiheit, Demokratie, Menschenrechte, . . .

PATERNALISMUS

- "wohlwollende Bevormundung": Staat weiss besser, was für Individuen gut ist, als diese selber
- Begründung oft in "Gesellschaftsästhetik"
 - ightarrow Ohne Rückgriff auf individuelle Präferenzen normative Systeme oft autoritär

BEWERTUNG VON ZUSTÄNDEN: EFFIZIENZ

Pareto-Kriterium

Ein Zustand ist pareto-effizient, wenn es nicht mehr möglich ist, ein Individuum besser zu stellen, ohne dabei mindestens ein anderes schlechter zu stellen.

- Annahme: Keine private Information
 - ightarrow Vergabe von öffentlichen Auftragen, Herstellungskosten bei Monopol
- "ex-post Effizienz": informationsabhängige Effizienz

EFFIZIENZ

FORMALISIERUNG: PARETO-KRITERIEN

- Sei x_i: Zustand eines Individuums i (i.d.R. mehrdimensional)
- Sei $x := (x_1, \dots, x_n)$: sozialer Zustand einer Gesellschaft mit n Individuen
- $V_i(x)$: individuelle Nutzenfunktion (ggf. abhängig von x_i mit $j \neq i$)
- $V(x) := (V_1(x), \dots, V_n(x))$: Abbildung des sozialen Zustands in den Nutzenraum

FORMALISIERUNG: PARETO-KRITERIEN

Pareto-Superiorität

Ein Zustand x ist einem anderen Zustand x' pareto-superior, wenn gilt:

 $V_i(x) \ge V_i(x')$ für alle i und $V_j(x) > V_j(x')$ für mindestens ein j.

Pareto-Effizienz

Ein Zustand x ist pareto-effizient, wenn es keinen anderen Zustand x' gibt, der x pareto-superior ist.

BEISPIEL: PARETO-EFFIZIENZ VS. PARETO-SUPERIORITÄT

	Α	В	С
X	5	5	5
χ'	3	4	6

- x: alle gleich, Zustand ist **pareto-effizient**
- x': A,B ist schlechter, C ist besser \Rightarrow **kein Pareto-Vergleich** möglich
- Also: x ist **nicht pareto-superior** zu x'
- Aber: x' ist **nicht pareto-effizient**, weil es einen besseren Zustand geben könnte

WARUM IST X' INEFFIZIENT?

	Α	В	С
Χ	5	5	5
χ'	3	4	6
\tilde{X}	5	4	6

- x' ist nicht pareto-effizient, weil es einen Zustand geben könnte, in dem
 - A besser gestellt ist (z.B. 5 statt 3)
 - B und C mindestens gleich gut gestellt sind
 - $\rightarrow \tilde{x}$ ist pareto-superior zu x'
 - $\rightarrow x'$ nicht effizient, auch wenn x nicht pareto-superior zu x' ist

PARETO-EFFIZIENT VS. PARETO-SUPERIOR

$$\left. \begin{array}{ll} x & \mathsf{pareto\text{-effizient}} \\ x' & \mathsf{nicht\ pareto\text{-effizient}} \end{array} \right\} \quad \times \Longrightarrow \quad x \; \mathsf{pareto\text{-superior}} \; \mathsf{zu} \; x'$$

 \rightarrow Problem: Wie entscheiden, wenn x effizient ist, aber x' nicht — jedoch x nicht pareto-superior zu x'?

KALDOR-HICKS KOMPENSATIONSKRITERIUM

- Übergang von Zustand A zu B ist gerechtfertigt, wenn
 - eine Person i durch den Übergang besser gestellt wird,
 - und sie den Verlust von Person *j* (theoretisch) kompensieren könnte,
 - und danach noch ein Nettogewinn verbleibt.
 - → sogenannte "potentielle Pareto-Verbesserung"
- Kritik: zählt nur Möglichkeit zur Kompensation, nicht tatsächliche Durchführung!

PROBLEM UND AUSWEG

- Das Kriterium erlaubt Übergänge, auch wenn niemand tatsächlich kompensiert wird
- Beispiel: Freihandel
 - nützt vielen sehr
 - schadet einigen deutlich
 - → Kaldor-Verbesserung!
 - ightarrow Lösung: Einführung einer sozialen Wohlfahrtsfunktion V^*

AXIOM 1: PARETO-KONSISTENZ

Axiom 1

Wenn ein Zustand x pareto-superior zu x' ist, dann soll auch gelten:

$$V^*(x) > V^*(x')$$

- Intuition: Wenn sich niemand verschlechtert und jemand verbessert, dann sollte die soziale Wohlfahrt steigen
- V* soll mit dem Pareto-Kriterium "kompatibel" sein

AXIOM 2: ANONYMITÄT

Axiom 2

Wenn $V_i(x) = V_i(x')$ für alle Individuen i = 1, ..., n, dann gilt:

$$V^*(x) = V^*(x')$$

- Intuition: Nur das individuelle Nutzenniveau z\u00e4hlt, nicht die Eigenschaften des Zustands selbst
- Keine Rolle, wie ein Zustand zustande kommt nur die Verteilung zählt

KONSEQUENZEN DER AXIOME

Satz 1: Wenn Axiom 1 und 2 erfüllt sind, dann existiert eine Funktion

$$V^*(x) = W(V_1(x), \ldots, V_n(x))$$

wobei W streng monoton in allen Argumenten ist.

- Satz 2: Jeder Zustand, der $W(V_1(x), \dots, V_n(x))$ maximiert, ist pareto-effizient
 - $\rightarrow \ \, \text{Damit wird aus einem normativen System ein konsistentes Entscheidungsinstrument!}$

BEISPIELE FÜR SOZIALE WOHLFAHRTSFUNKTIONEN

• 1) Utilitarismus:

$$W(x) = \sum_{i=1}^{n} V_i(x)$$

2) Bergson/Samuelson-Typ:

$$W(x) = \sum_{i=1}^{n} \alpha_i V_i(x), \quad \alpha_i > 0$$

3) Nash/Bernoulli-Typ:

$$W(x) = \prod_{i=1}^{n} V_i(x)$$

4) Rawls:

$$W(x) = \min\{V_i(x)\}\$$

GERECHTIGKEIT

GERECHTIGKEIT UND SOZIALE WOHLFAHRTSFUNKTIONALE

- Ziel: Abbildung rationaler (vollständiger, transitiver) Präferenzen in gesellschaftliche Ordnungssysteme
- Soziale Wohlfahrtsfunktionale ordnen Vektoren individueller Nutzen in eine gesellschaftliche Präferenzrelation ein

ARROW'S AXIOME

- Pareto-Kriterium: Wenn alle Individuen x über x' bevorzugen, so muss die soziale Ordnung x bevorzugen
- Unabhängigkeit von irrelevanten Alternativen (IIA): Soziale Entscheidungen zwischen x
 und y dürfen nicht von Präferenzen zu weiteren Alternativen beeinflusst werden.
- Nicht-Diktatur: Es gibt keinen einzelnen Entscheider, dessen individuelle Präferenzen die soziale Ordnung vollständig bestimmen.

ARROW'S UNMÖGLICHKEITSTHEOREM

Arrow's Unmöglichkeitstheorem

Für mindestens drei Alternativen gibt es kein soziales Wohlfahrtsfunktional, das gleichzeitig alle drei oben genannten Kriterien erfüllt

BEISPIEL FÜR ARROW'S UNMÖGLICHKEITSTHEOREM

• Drei Individuen, drei Alternativen: Fahrrad (A), Auto (B), Zug (C)

R	ang	Person 1	Person 2	Person 3	 A > B (Mehrheit: 1 und 3)
1.	Wahl	Α	В	С	- <i>B</i> > <i>C</i> (Mehrheit: 1 und 2)
2.	Wahl	В	С	Α	 C > A (Mehrheit: 2 und 3)
3.	Wahl	С	Α	В	\Rightarrow Zyklus: $A > B > C > A$

 $\rightarrow \ \ \text{Keine konsistente gesellschaftliche Pr\"{a}ferenzordnung trotz individueller Rationalit\"{a}t}$